Cathode ray tube essentially consists of an electron gun for producing a stream of electrons, focusing and accelerating anodes for producing a narrow and sharply focused electron beam, horizontal and vertical deflection plates for controlling the beam path and an evacuated glass envelope with phosphorescent screen giving bright spot when struck by a high velocity electron beam.
Electron Gun Assembly.
The electron gun assembly consists of an indirectly heated cathode, a control grid surrounding the cathode, a focusing anode and an accelerating anode. The sole function of the electron gun assembly is to provide a focused electron beam which is accelerated towards the phosphor screen. The cathode is a nickel cylinder coated with an oxide coating and emits plenty of electrons, when heated. The emitting surface of the cathode should be as small as possible, theoretically a point. Rate of emission of electrons or say the intensity of electron beam depends on the cathode current, which can be controlled by the control grid |n a manner similar to a conventional vacuum tube.
The control grid is a metal cylinder covered at one end but with a small hole in the cover. The grid is kept at negative potential (variable) with respect to cathode and its function is to vary the electron emission and so the brilliancy of the spot on the phosphor screen. The hole in the grid is provided to allow passage for electrons through it and concentrate the beam of electrons along the axis of tube. Electron beam comes out from the control grid through a small hole in it and enters a pre-accelerating anode, which is a hollow cylinder in shape and is at a potential of few hundred volts more positive than the cathode so as to accelerate the electron beam in the electric field. This accelerated beam would be scattered now because of variations in energy and would produce a broad ill-defined spot on the screen. This electron beam is focused on the screen by an electrostatic lens consisting of two more cylindrical anodes called the focusing anode and accelerating anode apart from the pre-accelerating anode. The focusing and accelerating anodes may be open or close at both ends and if covered, holes must be provided in the anode cover for the passage of electrons. The function of these anodes is to concentrate and focus the beam on the screen and also to accelerate the speed of electrons.
Electrostatic Focusing
An electrostatic focusing system is shown in figure. Electrostatic lens consists of three anodes, with the middle anode at a lower potential than the other two electrodes.In figure two anodes and its electrostatic lines and equipotential surfaces are shown. A pd is kept between these two electrodes so that an electric field is generated between them. Spreading of electric field is caused because of repulsion between electric lines. If equipotential lines are drawn, as shown in figure, they would bulge at the centre of the two anodes. As we know that electrons move in a direction opposite to that of electric field lines and equipotential surfaces are perpendicular to the electric field lines so force on the electron is exerted in the direction normal to the equipotential surface.
Deflection of cathode ray
We know that a force is experienced by an electron when it is kept in a uniform electric field. This principle is
the basis for the deflection of electron beam owing to deflection plates. Let us consider an electron having
initial velocity of u m/s along X-axis at point O in the space between the plates A and B, each of length l metres and separated by a distance of d metres. Let the pd across the plates be of V volts. For simplicity, let us assume that the field is uniform and does not extend beyond the ends of the plates. Axial velocity of electron remains unchanged and is equal to u as there is no axial force and, therefore, no axial acceleration.
initial velocity of u m/s along X-axis at point O in the space between the plates A and B, each of length l metres and separated by a distance of d metres. Let the pd across the plates be of V volts. For simplicity, let us assume that the field is uniform and does not extend beyond the ends of the plates. Axial velocity of electron remains unchanged and is equal to u as there is no axial force and, therefore, no axial acceleration.
Screen For CRT.
As we know that some crystalline materials, such a phosphor, have property of emitting light when exposed to radiation. This is called the fluorescence characteristic of the materials. These fluorescent materials continue to emit light even after radiation exposure is cut off. This is called the phosphorescence characteristic of the materials. The length of time during which phosphorescence occurs is called the persistence of the phosphor.The end wall of the CRT, called the screen, is coated with phosphor. When electron beam strikes the CRT screen, a spot of light is produced on the screen. The phosphor absorbs the kinetic energy of the bombarding electrons and emits, energy at a lower frequency in a visual spectrum. Among the fluorescent materials used are zinc orthosilicate giving a green trace very suitable for visual observations; calcium tungstate giving blue and ultra-violet radiations very suitable for photography and zinc sulphide with other materials giving a white light suitable for TV. Zinc phosphate gives a pronounced after glow and is useful when studying transient phenomena because the trace persists for short while after the transient has disappeared.